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ABSTRACT 

tuns iiier  a  stockpile  consisting  of     n     items where  the  ith 
itt-m  has   a   rating    r,   ti=l,   ...,n.     An  item with rating 

r   ,   it   kept   in stockpile until   time     t    and  then released   to 
the   field,   will  have a   field  life  of    L(r)d(t)   .     Thus  it   is 
assumed   that   for any     t   ,   the  field   life  for  issuance at 
time     t      is  proportional   to   the   time    0    field   life. 

Items  are   to  he  issued  one by one   from the  stockpile  to  the 
field  until   the stockpile  is  depleted.     The  ith   issued  item 
is   placed   in  the  field   immediately upon  the death ir   the 
fieJd  of   the   (i-l)st   issued   item.     Conditions  for LIFO and 
FIFO  optiniality are obtained. 

J 



0.     Introduction.      Consider a stockpile consisting of    n    items where the 

i      item has a rating      r.,     i =  l,...,n.      An iteir with rating      r, 

if kept in stockpile until  time    t    and then released to the field, will 

have a field life of    L(r)d(t).    Thus it is assumed that for any    t.    the 

field life for issuance at time    t    is proportional  to the time    0    field 

life. 

Items are to be issued one by one from the stockpile to the field until 

the stockpile is depleted.    The i      issued item is placed in the field immedi- 

ately upon the death in the field of the  (i-l)st issued item.    The problem 

of interest is to find the order of item issue which maximizes the total 

field life obtained from the stockpile. 

The policy which issues items in increasing order of the item ratings 

is called the LIFO issuing policy, while the policy which issue the items 

in decreasing order of the ratings is called the FIFO issuing policy.    For 

example if there are three items which initially have ratings   0 < r    < r_ < r., 

then the total field life following LIFO is: 

LOrp ♦ L(r2)d(L(r1)) * L(r3)d(L(r1)  ♦ Ur^ddir^)) 

and the total field life following FIFO is: 

L(r3) ♦ L(r2)d(L(r3)) ♦ Kr^ddCrj) ♦ L(r2)d(L(r3))) . 

Derman and Klein [3] and Lieberaan [^J have considered the problem of 

maxinizing the total field life in a model under which the lifetime of an 

item at time t whose initial rating is r is given by L(r+t). 
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In both papers conditions are derived  for LIFO and FIFO optiaality.    Other 

papers on  this model may be found in the references.    The model which we 

discuss  (which we call the multiplicative model) does not see« to have been 

previously considered 'n the interature. 

In section 2 we obtain conditions for LIFO anc FIFO optimality for the 

multiplicative model.    In section 3 examples are presented. 

1.    Results 

Given n ratings r, ,...,r  with ra < n distinct values a, .....a , 1 i: -- 1 m 
n 

with    a.     appearing    k.    times     (k.  >^ ,    [ k. « n),    an issuing policy is 
m 1 

any one of the   n!/n k. i    distinguishable arrangenents of the    a. 's.    We 

therefore consider two policies to be the same if the n-tuples of ratings of 

items  issued are the same, even though the indices of items may differ.     For 

example if    r    = r    ■ 1,    r_ « 2    the policy which issues item 1 first and 

item 2 second is considered to be the same as the one which issues item 2 

first and item 1 second. 

Define the following classes of functions on    [0,<»): 

C*(C")    »    {f :   ar(a,b)  » f(a)  - r^- (f(b)-f(a))  <(>)!    for all 0<a<b} 
t o-a 

L  * (f:    f(0) * 0,    f    is monotone increasing) 

M*(M')    =    {f:    f ^ 0,    f"    exists and is strictly positive (negative)} 

Our main result is theorem 1 below: 

i^f-^MirtiMliii iiiniin  ■ MM* ■< 
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Theoren 1.       If    L e  L,    d(ü)  • I,    and    de   M*(M"),    then FIFO(LIFO)     is the 

unique optimal policy. 

We shall derive three lenmas before proving theorem 1. 

Lenma 1.       If    L e  L,     d(0)  = 1,    and    de  C*(C'),    then for    n =  2 

FIFO (LIFO)  is the unique optimal policy. 

Proof.      FIFO is optimal iff for    0 < a < b: 

(1) L(a)  ♦ L(b)d(L(a))  <  L(b)   ♦  L(a)dLCb) 

Note that  (1)  is equivalent to: 

(L(b)  - L(a))d(l,(a))  - L(a) (d(l.(b))   - d(L(a))) < L(b)  - L(a) 

which can be rewritten as (L(b) - L(a))ad(L(a), L(b)) < 1(h)  -  L(a).  Since 

L is monotone increasing this is equivalent to a .(L(a),L(b)) < 1. 

Lgga 2.  Let ft(x) « f (t*xf (t))/f (t). Then if f c M*(M") and f(0) = 1 

then f e C*(C") for all t ^ 0. 

Proof.  We have to show that if f(0) « 1 and f c M  then af (a.b) < 1 
t 

for all t > 0, 0 < a < b. Note that : 

(2) ft(b) - ft(a^  -  (b-a)f,(a*) 
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where t*af(t) < a* < t*tf(t),  since f exists and is continuous. Since 

f  is increasing ii. follows from (2) that: 

(3)        af (a,b) < (f(t*af(t))/f(t)) - af {t*af(t)) = ß(a) 

Now 6(0) = 1 and ß'fa) = -af(t)f"(t+af(t)) < 0 since f > 0, f' > 0 

(Note that f ^ 0. f(0) = 1 and f' > 0 imply f > 0). Therefore ß(a) < 1 

for all a > 0 so that af (a.b) < 1 for all 0 < a < b. A similar argument 

holds for f e M'. 

Lemna 3.  Define g (y) = y*xf(y). Then if f(0) - 1 and f e M* then 

g„(z) * g_(y) for all z * x. y < x, and g  is monotone increasing on 

[x,*).  If f(0) = 1 and f e M   then g  is monotone increasing on [0,°°) 

Proof.  Let f(0) = 1 and f £ M , Then by lemna 2: 

(4) f(y) - ^ (f(yh) - f(y)) < 1 

Therefore by letting    h *  0    we obtain: 

(5) f(y)  - yf'ty) <  1 

so that    g'fx) » 1 ♦ xf'Cx) >  1  ♦ x(f^x^'1) = f(x)  > 0.    Therefore    g'U)  > 0 

a^d    g"(y) = xf"(y) > 0    for all    y,  so that    g (y)    is increasing for    y ^ x. 
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Now,  there are two cases:     f (0)  >  - ~   and    £'(0) <  - - .     If    f (0)   >  - - 

then    g'Cy)  >  0    for all    y    and    g      is increasing on    [0,°°).     If    f (0) <  - - 

then since    g*    is increasing and continuous and    g'Cx)  > 0,    it  follows 

that    g'(y) = 0    for some    y t    0,x).    Therefore      sup    g  (y)  = max(g  (0),g  Cx; 
0<y<^x 

max(x, x*xf(x))  = x*xf(x) » gx(
x)- 

If f e M" then {'{%) >  0 for all x, since if f'{t)  = -6 < 0, 

then f(t*s) <^ f(t) - s6 and f(t) - so is negative for s > f(t)/6, con- 

tradicting f ^ 0. Therefore g'Cy) = l*xf'{y) >  0 for all y and there- 

fore g  is increasing. 

Proof of Theorem 1.  Assune that if d c M , I c L,    then FIFO is the 

unique optimal policy for the issuing of n - k items. We shall prove that 

this implies that FIFO ib an optimal policy for n » k*l. This, combined 

with leonas 1 and 2, proves the FIFO part of theorem 1. 

Given kM  items, choose an optimal policy P  (more than one may 

exist), and for this policy let t be the total field life of the first 

k-1 issued items, a the rating of the kth issued item, and x the 

rating of the last issued item. The total field life of this policy is 

fd(t)[L(a) ♦ L(x)dt{L(a))l - F{P). 

Consider the policy P', which issues the first k-1 items in the sane 

order as P,  but then issues x followed by a. The total field life, 

FfP') of P'  is equal to t*d(t)(L(x) ♦ L(a)d (L(x))l. Since F{r) > nP') 

it follows from lemna 2 that x < a. 
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Let P* be the policy w>ich issues x  last and issues the other k 

items according to FIFO.  Then F(P*) « s* ♦ Lfx)d(s*)  and F(P) = s*L(x)d(s). 

wl.ere s*(s) is the total field life of the first k iteas issued under 

policies P*(P).  By our induction assumption 5* >^ s. Moreover s* >^ L(a) > 

L(x),  and therefore by leoma 3 F(P*) >^ FfP) with equaUty iff s* = s, 

and thus by the induction assumption of uniqueness P ■ P*.  But if P = P* 

then a is the lowest rated item o*" the first k issued under P*. and 

we showed that x <_ &.    Therefore I * is the FIFO policy and the rebult is 

proved. A similar argument works in the LIFO case. 

2. Coaments and Additions 

(i) Note that our optiaality conditions allow for d to be increasing in 

the FIFO case and require d to be increasing in the LIFO case (see the proof 

of lemma 3). The interpretation of increasing d is that items in stockpile 

may be constantly improved. 

The more realistic case is where d is decreasing, since this indicates 

that items in stockpile are deteriorating. The intuition behind the FIFO 

optxmality result is that if the rate of deterioration {-d') decreases 

over time then we want to remove the higher fated itens from the stockpile 

as soon as possible. 

(ii)  It follows from a slight modification of the proof of theorem 1 that 

if L c L, d(0) «1,  d ^ 0 and d" >(<)  0 then FIFO (LIFO) is an optimal 

(although perhaps not unique) policy. 
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(iii)     If     Lei     and    d(t)   =   l*ct.     c  >  0,     then  both  LIFU  and  FIFO are 

optimal policies. 

(iv)     If    Lei    and    d(t)  = eat    then FIFO is an optimal  policy.     If    i t  C 

then FIFO is the unique optimal policy.    Thus for exponential  deterioration 

(a <  0)    or exponential  iiiiprove«ent     (a  > 0) FIFO is the unique uptimal  policy. 

(v) The condition d(0) « 1 can be replaced by d(0) » 0. since by defining 

L* = d(0)L and d* ■ d/'i(0) the ro' \cn is trarsfon'n' to tie CTK >"(xi 1 

and the essential structure of    L    and    d    is maintained. 

Acknowledgment.       The authors are grateful   to Professor  Hamilton  fjimons  for 

his  interesting comments and  suggestions. 
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